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FREQUENCY-RESPONSE CHARACTERISTICS OF
A SINGLE-LINK FLEXIBLE JOINT MANIPULATOR AND

POSSIBLE TRAJECTORY TRACKING
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A single-link manipulator consisting of servomotor, elastic shaft and rigid link is chosen to
represent an elastic control system. Equations of the torsional elastic system are derived
including the servomotor control system parameters. The transfer function of the elastic
control system is obtained including not only control system parameters but also the natural
frequency and the damping ratio of the torsional vibratory system. Non-dimensional
parameters such as the ratio of the structural natural frequency to the substructural natural
frequency and the ratio of the substructural natural frequency to the control system
frequency are de"ned. The e!ects of these parameters on the frequency response of the
system are investigated. A simple and e!ective method using the frequency-response
characteristics is proposed to track a cycloidal trajectory precisely.

( 2000 Academic Press
1. INTRODUCTION

Servomotors and stepper motors are rapidly replacing conventional ones. Introduction of
servomotors has increased the importance of the transient motion. Transient response
analysis is becoming increasingly important and critical in the design of automated machine
this is why position control of mechanical systems with structural #exibility has been an
important research area in recent years. Location of points at their extremities must often be
controlled with great precision, by torquing at some other point separated from the "rst by
#exible sections in structures such as manipulators, satellites, or space structures [1]. For
a broad class of industrial robots, the elastic compliance is mainly concentrated in joints
and harmonic drives, and for this reason there is a growing interest in the area of modelling
and control of #exible joint robots and space structures. Torsionally #exible control systems
have been studied by several researchers. The main emphasis has been on the adaptive
control of the system. Generally, state space models are developed and linear quadratic
optimal control techniques used, and robustness and stability of #exible systems are
discussed [2}9]. Previously, a model similar to the one used in this paper was studied [10],
with the e!ect of the #exibility on the poles of the control system being discussed for
a speci"c problem. It is shown that, because of the #exibility, complex roots appear near the
imaginary axis and dominate the behaviour of the system. These dominant roots change
location, depending on the gains K

p
, K

d
and K

i
. Ankarali and Diken [11] analyzed a similar

problem without control and discuss conditions to eliminate the residual vibration.
In this paper, the problem is more generalized. Non-dimensional parameters such as k,

which is the ratio of the structural natural frequency to the substructural natural frequency,
and j, which is the ratio of the substructural natural frequency to the control system
frequency are de"ned and the transfer function of the control system is obtained as the
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180 H. DIKEN
function of these parameters. Frequency response of the elastic control system is analyzed
with respect to these parameters. The measure of the #exibility of the control system is also
given with respect to these parameters. It is shown that for low control damping f, an elastic
control system behaves like a two-degrees-of-freedom torsional system excited with the
torque at the motor side. For high values of control damping, the system behaves like
a single-degree-of-freedom torsional system clamped at the motor side and free at the load
side. The possible trajectory tracking with the elastic control system is also discussed. For
this purpose, a cycloidal input function, which consists of one ramp and one sinusoidal part,
is proposed as an input trajectory. The sinusoidal part of the cycloid is modi"ed by using
the frequency-response characteristics of the chosen system and the condition for precise
trajectory tracking is obtained for the elastic control system.

2. FORMULATION

The elastic control system considered here is a servomotor attached to the manipulator
link by a #exible shaft as shown in Figure 1. The gear train or harmonic drive is represented
by a gear ratio n, but inertial e!ects are neglected. The elastic shaft has #exibility k, and
damping coe$cient c. The motor inertia and load inertia are represented by J

m
and

J
L

respectively. The friction at the bearings is neglected, but if it is not neglected it can be
compensated through controller gains. For this two-degrees-of-freedom vibratory system,
the dynamic equations, after Laplace transformation are
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Here h
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and h
L

show the angular motion of the motor and the load respectively. ¹ is the
torque applied to the motor side. For a PD position control of the servomotor shown in
Figure 2 [12], without considering torque disturbances, the torque produced to drive the
system can be obtained as
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Figure 1. The model of the elastic control system.



Figure 2. Block diagram of the servomotor control system.
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where K
p

and K
d

are proportional and derivative gain constants respectively. ¸
a

is the
armature inductance and usually much smaller than R

a
, and here the e!ect of ¸

a
can be

neglected. R
a
is the resistance of the armature coils, K

T
is the torque constant, K

b
is the back

electromotive force constant, and h
d

is the desired angular motion. When equation (2) is
inserted in equation (1), the following relation is obtained:
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Using equation (3), the transfer function of the control system relating the output angular
motion to the desired input angular motion is obtained as
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De"nitions of the terms appearing in this transfer function are
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Here ¹
m

is the motor mechanical time constant, ¹
p
and ¹

d
are the parameters related to the

proportional gain and derivative gain, u
n

is the structural natural frequency, f
n

is the
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structural damping ratio, and u
L

is the substructural natural frequency of the torsionally
#exible system. Here a substructure is de"ned as a #exible system which is obtained by
"xing the motor end of the #exible shaft while keeping the link side free to rotate. If the shaft
is assumed to be rigid, u

n
and u

L
will go to in"nity and the elastic system transfer function

will be reduced to the rigid system transfer function:
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If K
T

is assumed to be zero for no control torque, then ¹
d
, ¹

p
, and ¹

m
will go to in"nity and

the characteristic equation of the system will reduce to

s2 (s2#2f
n
u

n
s#u2

n
)"0 (9)

which gives the rigid-body motion and the characteristic equation of the
two-degrees-of-freedom torsionally #exible system. Equation (8) can also be written in the
following form [13]:
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If the system were rigid, u and f would be the rigid control system frequency and damping
ratio respectively. With the above de"nitions, the transfer function of the elastic control
system given in equation (4) becomes
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Here k is de"ned as the ratio between the structural natural frequency and the substructural
natural frequency of the torsionally #exible system. It is also a function of the inertia ratio:
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If s"ju
r

and the substructural frequency ratio j"u
L
/u, and the resonance frequency

ratio r"u
r
/u, then the magnitude and phase angle for the frequency response of the elastic

control system become
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When the structural damping f
n

is ignored, the magnitude and phase angle become
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Here b"z/u. Since z is the ratio of K
p
and K

d
, when the u and f of the control system are

selected, it is no longer an independent parameter. By using the de"nitions in equations (6)
and (11), b becomes
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Here ¹
mo

is the time constant of the servomotor alone. Since the control system frequency
u is usually much greater than 1, k is always greater than 1, and the control system damping
f is generally between 0)7 and 1, then the second term will always be much less than 2f and
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can be neglected. Equations (16) and (17) then become
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As can be seen from equations (14) and (15), when j goes to in"nity (in other words, if the
system is rigid), then the equations for the frequency response of the elastic control system
reduce to that of the rigid control system. In these equations there are two important
parameters, k and j, which have been de"ned earlier. Considering the denominator of
equation (19), if the control damping ratio f goes to zero, the second term disappears and
the "rst term gives two roots for the resonance depending on the values of j and k. For the
increasing values of j, resonance frequency approaches r"1 or u

r
"u. In other words, if

u
L
Au the system behaves like a rigid system. If f goes to in"nity, the resonance frequency

becomes equal to the substructural frequency u
L
. Therefore, for very high values of f the

motor side behaves like a "xed end and the system behaves like a #exible shaft and disc with
"xed}free end conditions. The physical interpretation is such that for the low values of the
control system damping f, the system behaves like a two-degrees-of-freedom torsionally
vibratory system with J

m
and J

L
and is also excited with the control system torque which is

a function of f and u. For the high values of f the system behaves like
a single-degree-of-freedom vibratory system "xed at the motor side and free to vibrate at the
load side. Here the control system damping f acts as a measure of the freedom of the motor
side. f"0 means that the motor side is free, f"R means that the motor side is clamped.
This is explained in Figure 3. For f"0)4 two resonance peaks are seen; one is close to 1 and
the second is close to the frequency ratio u

n
/u"4)24. For f"1)5 the resonance frequency

ratio approaches the substructural frequency ratio j"u
L
/u"3. Figures 4}6 also show the

frequency response of the elastic control system for di!erent values of j. In each "gure the
response of the system for di!erent f values are also plotted. The magnitude of the frequency
response decreases for growing values of j. There is also a common point through which the
responses for all values of f pass. The polynomal giving the r value of that point can be
obtained by inserting f"0 and R into equation (16) and equating them to each other. The
polynomial is
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The following formula also gives a good approximation to the value of r with an average
error of 2%:
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Figure 3. Frequency-response plot for k"J2"1)41, j"3.

Figure 4. Frequency-response plot for k"J4"2, j"1)5.
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It can also be seen that there is a certain value of f at which the maximum value of the
magnitude is the least. It is di$cult to "nd an analytical formula giving f for that point.
Figures 7 and 8 are plotted to show the e!ect of j and k on the maximum magnitudes of the
frequency responses of the elastic control system with respect to f. Figure 7 is plotted for
di!erent j values. For low values of j, the resonance frequency responses are higher and
decrease with increasing values of j. The f value giving the lowest maximum magnitude of



Figure 5. Frequency-response plot for k"J4"2, j"2.

Figure 6. Frequency-response plot for k"J4"2, j"3.
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the response shifts to the right with increasing values of j. In Figure 8 maximum magnitude
curves are plotted for di!erent k values. Again similar observations can be made. For
increasing values of k, maximum magnitudes are decreased and also the minima of the
curves are shifted to the right. Another observation is that for increasing values of j and
k the response magnitudes are lowered and the minimum disappears. In Figure 9 the
frequency response of the rigid control system is shown which means that j"R. The



Figure 7. Maximum magnitude plots, solid line plot is for k"J2"1)41, dashed line plot is for k"J5"2)24.

Figure 8. Maximum magnitude plots, solid line plot is for j"1)5, dashed line plot is for j"3, and dash-dot line
plot is for j"R.
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second peak which was observed in the plots of Figure 6 disappears when k'2 and j'6.
The elastic control system behaves like a rigid system and the system is no longer excited at
the structural frequency u

n
and at substructural frequency u

L
. Figures 10 and 11 show the

phase angle plots and the phase angle versus magnitude plots respectively. In Figure 12 the
plot of Figure 11 is repeated and compared with the frequency response whilst structural
damping exists. The structural damping f

n
"0)02. The e!ect of the structural damping is



Figure 9. Frequency-response plot for rigid control system.

Figure 10. Phase angle plot of the system for k"J4"2, j"2.
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negligible for low values of control damping f and more e!ective at high values. The overall
behaviour of the system is only slightly a!ected by the structural damping.

3. TRAJECTORY TRACKING

If the elastic control system has to follow a certain trajectory, a possible trajectory for this
purpose is the cycloidal function commonly used in cam design. Since the cycloidal



Figure 11. Phase angle versus magnitude plot for k"J4"2, j"2.

Figure 12. Phase angle versus magnitude plot for k"J4"2, j"2. Solid line plot is for the system without
structural damping, dashed line plot is for the system with structural damping f

n
"0)02.
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function, when derived twice with respect to time, give a pure sinusoidal acceleration which
is zero at the beginning and at the end, it is well suited, especially in robotics applications, as
a servomotor motion trajectory for smooth running. The cycloid has two parts: one is ramp
and the other is sinusoid:
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Here h (t) is the trajectory, h
d
is the desired angle travelled, t

r
is the rise time for the angle

travelled, and u
r
is the rise frequency. Suppose an elastic control system has the values

k"2, j"2, f"0)4, u"70 rad/s, and the resonance frequency ratio is r"u
r
/u"0)6.

To examine the steady state error of the control system to each part of the cycloidal input,
the Laplace transform of the cycloidal trajectory is obtained as
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Here the b"z/u+1/2f approximation is used and f
n

is neglected. If the "nal value
theorem
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is used, the steady state error of the system for the cycloidal input is found to be zero.
However, for the sinusoidal part of the input, the output will have a di!erent magnitude and
phase angle. That is why, for regular cycloidal input, zero steady state error and precise
trajectory tracking cannot be reached as can be seen in Figures 13 and 14. If the sinusoidal
input is modi"ed so that phase is eliminated and magnitude is adjusted, it may be possible
to obtain zero steady state error and good tracking. The proposed modi"ed cycloidal input
function is

h(t)"
h
d

2n Cur
t!

1

M(r, f, j, k)
sin(u

r
t#/ (r, f, j, k))D . (27)

For a chosen f, r, j and k, the magnitude M and the phase angle / are known from equation
(16). When these values are inserted into the modi"ed cycloidal input, the sinusoidal output
of the control system will be equal to the desired sinusoidal part of the cycloidal input and
better tracking is expected. To show the e!ectiveness of the proposed method, two examples
are given. In the "rst example f"0)4 is chosen (low damping), k"2 and j"2; this means
that the control system is highly elastic. For these values M"1)565 and /"0)2166 rad.
Results are shown in Figure 15. The dashed line plot is the response of the elastic control
system to the cycloidal input, and dash-dot line is the response of the elastic control system
to the modi"ed cycloidal input. The system follows the modi"ed input precisely but a small
lag at the beginning and a small residual vibration at the end is observed. The reason for this
can be explained as follows. Since the modi"ed cycloidal function is de"ned by the "nite
internal 0)t)t
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, it should actually be written as
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Figure 13. System response to the ramp part of the cycloidal input, f"0)4, j"2, k"2,** r"0)6,* input;
}} } output.

Figure 14. System response to the sinusoid part of the cycloidal input, f"0)4, j"2, k"2, r"0)6.**Input;
}} } output.
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where u (t) is the unit step function. It is seen that there are step changes at t"0 and at
t"t

r
, that is,
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Figure 15. System response to the cycloidal input, f"0)4, k"2, j"2, r"0)6. Dashed line plot is the system
response to the cycloidal input, dash-dot line plot is the system response to the modi"ed cycloidol input.

Figure 16. System response to the cycloidal input, f"1)5, k"2, j"2, r"0)6. Dashed line plot is the system
response to the cycloidal input, dash-dot line plot is the system response to the modi"ed cycloidol input.
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Because of these step changes a lag at the beginning and a residual or transient vibration at
the end is expected. For the examples chosen these impulsive e!ects of the modi"ed
cycloidal input are not discouraging and the response is much better and more acceptable
than the unmodi"ed cycloidal input. The lower the value of sin / and the bigger the value of
2nM, the smaller the e!ect which these step changes will have on the system. In the second
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example f"1)5 (a high damping) and again j"2, and k"2. For these values M"1)190,
and /"!0)1787 rad. Figure 16 shows the responses of the control system to the cycloidal
and modi"ed cycloidal inputs. Again the system follows the input precisely with some lag
and residual vibration. Since this time the value of M is less than that in the previous
example, the step change is bigger, and consequently the lag and residual vibration
amplitude are also greater. For both cases r"0)6 or t

r
"0)1496 s. Up to the value r"0)3,

for any f, the phase angle is very small and the system tracks the input with negligible lag
and residual vibration. The plot in Figure 3 shows the magnitude of M with respect to the
ratio r which is between the cycloidal frequency and the control frequency. For a low
frequency ratio r and low control damping f, and for high frequency ratio r and high control
damping f, M assumes large values. Since large values of M will lower the step changes, and
consequently the magnitude of the lag and transient vibration will be lower. With high
frequency ratios or with low frequency ratios high or low control damping respectively,
should be used to obtain large M values it should also be noticed that for low values of j the
range of frequency ratio r narrows. Higher j values should also be preferred. These two
extreme examples show that even with an elastic control system, it is possible to obtain fast
and precise tracking for the cycloidal input.

4. CONCLUSION

An elastic control system consisting of a servomotor, elastic shaft and a rigid manipulator
link is studied. The transfer function of the control system is obtained, including parameters
related to the #exibility of the system. The frequency response of the system is analyzed and
the e!ect of parameters such as substructural frequency ratio j, structural frequency ratio
k and resonance frequency ratio r on the system response are studied. It is shown that for
low values of control system damping f, the system is a!ected by the control system
frequency u and by the structural frequency u

n
. For increasing values of f, the control

system is a!ected only by the substructural frequency u
L
. Control system damping f acts as

a measure of the boundary condition at the motor side. When f is zero, the motor side is
free; when it is in"nite, the motor side is clamped. If k'2 and j'6, the elastic control
system behaves as a rigid control system and only the control frequency u is e!ective.
A modi"ed cycloidal input function is proposed for the elastic control system to track
precisely a trajectory, and it is shown that, although the system is highly elastic, with the
proper selection of the rise time, which is a function of j and k, it may track the input
precisely.
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